V2EX  ›  英汉词典

Cumulant-generating Function

定义 Definition

累积量生成函数(cumulant-generating function, CGF)是概率论与统计中用来描述随机变量分布的一种函数,通常定义为随机变量 \(X\) 的矩母函数(MGF)的对数:
\[ K_X(t)=\log \mathbb{E}\left[e^{tX}\right] \] 它的一个重要性质是:对 \(K_X(t)\) 在 \(t=0\) 处求导,可以得到各阶累积量(cumulants)(如均值、方差以及更高阶的偏度相关量等)。

发音 Pronunciation (IPA)

/ˈkjuːmjʊlənt ˈdʒɛnəreɪtɪŋ ˈfʌŋkʃən/

例句 Examples

The cumulant-generating function helps summarize a distribution’s key properties.
累积量生成函数有助于概括一个分布的关键性质。

In large-deviation theory, researchers often analyze the cumulant-generating function to derive exponential tail bounds and asymptotic probabilities.
在大偏差理论中,研究者常通过分析累积量生成函数来推导指数型尾界与渐近概率。

词源 Etymology

cumulant源自“cumulative(累积的)”这一概念,强调把信息“累加”起来刻画分布特征;“累积量”一词在统计学中用于指代与矩(moments)相关但在可加性等性质上更便利的一组量。generating function(生成函数)在数学里指“用一个函数把一串数(如矩或累积量)编码进去”,而CGF用“对数 + 指数矩”的形式,把累积量系统地“生成”出来。

相关词 Related Words

文学与名著用例 Literary Works

  • Harald Cramér:《Mathematical Methods of Statistics》——在经典数理统计框架中涉及生成函数与相关推导思想(与CGF密切相关)。
  • Patrick Billingsley:《Probability and Measure》——在概率论严谨表述中常借助相关变换与生成函数工具讨论分布性质。
  • Amir Dembo & Ofer Zeitouni:《Large Deviations Techniques and Applications》——大偏差理论中频繁使用(对数)矩母函数/累积量生成函数来建立关键结果。
  • Thomas M. Cover & Joy A. Thomas:《Elements of Information Theory》——在信息论与概率不等式、指数界等内容中常与CGF相关联使用。
关于   ·   帮助文档   ·   自助推广系统   ·   博客   ·   API   ·   FAQ   ·   Solana   ·   1729 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 11ms · UTC 08:07 · PVG 16:07 · LAX 00:07 · JFK 03:07
♥ Do have faith in what you're doing.